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A Method for the Systematic  Application of Sign Relations 
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A method is described for the systematic application of the sign relation, S (h ' )S (h+h ' )  m S(h), 
to projections with symmetry pgg, prng, and p4g. The procedure allows large amounts of data to 
be handled compactly and does nob require a computer. It involves the recognition and correlation of 
sign 'coincidences', which are defined by using a variant, S(A)S(B)S(C) ~ + l, of the sign relation. 
As a consequence of the operation of symmetry elements, the product S(A)S(B) can enter into 
such a relation with several different third terms, S(C,), S(C2), etc., the signs of which are said to 
'coincide'. From these coincidences it is possible to deduce tentatively the signs of a considerable 
number of terms. An iterative process is used to adjust and extend the set of tentative signs so as 
to ensure optimal agreement witch the original data. 

The solving of two structures, harmine (C13H,2N20) and hydroxydihydroeremophilone 
(C15I-I2402), by this method is described, and details are given of the results produced by EDSAC 
when the harmine data were submitted to the Cochran-Douglas procedure. The ability of the new 
method to reach a single optimum solution (in contrast to EDSAC) is discussed. 
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1. Introduction 

I t  was shown by Sayre (1952) in the account of his 
'Squaring method '  tha t  the structure ~aetors of a 
crystal  composed of identical  resolved atoms satisfy 
the relat ions 

27 F ( h ' ) F ( h + h ' )  = v ~ ( h ) F ( h ) ,  (1) 
h' 

where q(h)  is a funct ion to account for the change in 
atomic shape in the squared structure and v is the 
volume of the uni t  cell. By  considering all the products 
F ( h ' ) F ( h + h ' )  for every structure factor or term, F(h) ,  
it  .is theoret ical ly possible to choose a set of signs 
(term signs) which will make every equat ion (1) true. 
In  practice, even for a projection this task is enormous. 
Moreover, it  would appear  tha t  unless quite a number  
of the contr ibut ing products F ( h ' ) F ( h + h ' )  are suf- 
f iciently large to dominate  the sign of the correspond- 
ing term, F(h) ,  i t  will be v i r tua l ly  impossible to arrive 
at a self-consistent set of term signs, even for a small  
set. The method has the merit ,  however, of using all 
the  information available.  

Cochran (1952) and  others (Zachariasen, 1952; 
Hughes,  1953; H a u p t m a n  & Karle,  1953; Cochran & 
Woolfson, 1955) have shown tha t  the signs of three 
un i ta ry  structure factors U(h), U(h'),  U ( h + h ' ) a r e  
probably  related by  the equation, 

S ( h ' ) S ( h + h ' )  ~, S(h), (2) 

and, for the conditions in which (1) is valid, the 
probabi l i ty  of (2), in Cochran & Woolfson's notation, 
is, 

= ½+½ tanh  [NIU(h)V(h')V(h+h') l] .  (3) 

Rela t ion (2) was used by  some of these authors  to 

determine the signs of addit ional  terms once the signs 
of some of the largest un i ta ry  structure factors were 
known, usual ly  from inequalities.  They made no use 
of the  magni tudes  of the U's, except in so far as the 
applicat ion of (2) was usually l imited to those terms 
for which I UI >~ 0-3. Recently,  however, Cochran & 
Douglas (1955) and  Vand & Pepinsky (1956) have 
described methods incorporat ing the individual  prob- 
a b i l i t i e s - a t  least approximately .  They used computers 
to determine the sets of term signs for which Z = 
_FY(h, h ' )P (h ,  h ' )  is large and positive. :Y(h, h') is 
defined as S(h)S(h')S(h+h') ,  and P(h ,  h ')  is defined 
as IU(h)U(h')U(h+h')l. The correct set gives a value 
of X, which, a l though probably  among the largest of 
these sums, m a y  not  be the greatest. The correct set 
is not  found uniquely,  bu t  must  be sought from a 
number  of possible sets. 

The method  described below was developed to 
adhere as closely as possible to Sayre 's  original pro- 
posal, but  to reduce the labour by  concentrat ing only 
on the more impor tan t  terms. I t  has been arranged 
to be almost  mechanical  and largely self-checking, and  
is offered for use where there is no computer,  for, 
a l though a 'manual '  method,  i t  has proved to be 
convenient and speedy. Moreover, for harmine,  where 
a direct comparison has been made with the Cochran-  
Douglas method,  it was found capable of handl ing  
more da ta  than  the computer,  and gave a single 
solution sufficiently near  the t ru th  for the correspond- 
ing s tructure to be solved. 

An impor tan t  basic concept of this  paper  is tha t  of 
sign 'coincidences' ,  which are defined by using a 
var iant  of (2): 

S(A)S(B)S(C) m + 1 .  (2a) 

The product  S(A)S(B) can enter into such a relation 
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~Hth several* different third terms, S(C1), S(Cz) , etc. 
and the signs of these are said to 'coincide'; i.e. 

Is(el) (4) 
§ 2 describes the preliminary process of collecting 

and sorting the many products, 

S(h ')S (h + h')l U (h')U (h + h ' ) l ,  

obtained. Comparatively few of these, however, lead 
to coincidences. § 3 describes ~ routine for recognizing 
and correlating the coincidences. § 4 describes an 
iterative procedure which, in principle at least, can 
be considered as equivalent to a converse process, 
represented by 

S(C) ~ S [ _ ~ S ( A ) S ( B ) I U ( A ) U ( B ) H c ,  (5) 

which is closely related to the quanti ty 2; evaluated 
by Cochran & Douglas, and by Vand & Pepinsky, and 
is, in fact, used by Cochran & Douglas as a 'further 
test '  (see their equation (3)). I t  serves to correct and 

* F r o m  Friedel 's  law it follows t ha t  

S (h )S (h ' )  = S(h )S(h ' )  ~ S ( h - ~ h ' )  and 
~_~ S ( h - - h ' ) ,  

so t ha t  a t  least  the two terms S(h- t -h ' )  and S ( h - - h ' )  coincide. 
When the  Laue  s y m m e t r y  includes s y m m e t r y  elements  ad- 
dit ional to the centre  of s y m m e t r y ,  it is possible for more  
than  these two terms to coincide (see § 3.1 and Fig.  1). 

extend the list of term signs deduced from the coin- 
cidences so as to secure the best agreement ~dth the 
larger body of sign relations. 

Although less information is used than in Sayre's 
method, the labour is now within reasonable bounds. 
Considerably more information is, however, brought 
to bear on the problem than can be used in Cochran's 
sign relation (2), and more than has so far been 
reported to have been fed into a computer, as in the 
Cochran-Douglas and Vand-Pepinsky methods. As 
sho~n below, it does not in favourable circumstances 
require a prior knowledge of any signs. 

2. The  me thod  of determining the products 

To describe the method, its application to the deter- 
mination of signs in a principal zone (0kl) of the space 
group P212121 will be considered, i..e. in the centre- 
symmetric plane group pgg.  (The method applies 
equally to the plane groups p m g  and p4g.) The crystal 
structures of both harmine (Howells, 1954) and 
hydroxydihydroeremophilone (Grant, 1957) have been 
determined from the solution of such a projection, 
and a brief outline of the method was presented by 
Howells to the Paris Congress, 1954, when describing 
the solving of harmine. 

2-1. Unitary structure factors are determined by 
the use of the expression 

3R 

5f 

4/, 7@ 

4 m  

6,1 

4L 

32 
3P 4"~ 5M 4K 3"I 

3-~ ~ 4,f 

4"~ ~ ,~ 6N 3"~ 

4y 3R ~ 4--; 

3u 3 0  

~ Fo 
3u 30 

4Y 32 4 v 

4v 3t 

3R 

4~ 

5G / 

7./ 5"k 4F  4"~ / 3,,4 

5~ 4.,' / 3-~ 

~ 40 @" 
3H ~ 3B 

ii cl i~ ,-i 1-6 1 ~, 
3H  3a  3B 

4o- 3.#" 4~ 

3~ 6N 3n 3e 40  

3p 6¢ 4Y 3~7 

3P 4 r  5M 4K 3 /  4/) 4 !  3b 

5., e ~ 7.,Y 

4L 3E B# 

62 5~ 4~ 

4m 7./ 5k 4 F  4o" 

4/, 78 

5G 

a 
/ 

3y 

3,4 

4/, 

(*) 

,o 4p 78 

3A 4/~ 4F S~7J  

3~" / 43 ~ 5 ~ /  

/ (~')3~ 

/ ~ 7.,,e 

/ 6"~ 4t ( ~  314/¢ ,1 , ///._. 

/ 7 /  40 3, 
/ 

:" 3,9 3a  3/-1 
/ 

• • 6 a ,o 
I / 38 ~ 3~ 

4 D  3e 

3b 4 f  4h 31 4/(" 

7 ~  

3E ,4/. 

Y~ 4~ s $  6"7 
3A 4o' 4F 5k 7,/ 

4,~ 7e 4/, 

5G 
4# 4.  e 8~ 4 [  4--~ 

4m 

62 
4L 

3Z 51 ~ 

5M4r  3P 3Ft 

45 6(, 3p 

3/~ 6N 3s  3t (4v~ 

3Af4o" 4W 3 ~ /  

30/ 3u 
. . . . . . . .  / ~° (z) ~2 

/ 30 .~ / 
~ 4 - ~  4-~ 3~ 4~' 

/ ~  6N ~ ~ 4"7 

5M~'~ 3, ° 3R 

:~¢ 5 ~  

m 
4 m  

Fig. 1. The square lat t ice for the  (100) projec t ion  of hydroxydihydroeremophi lone .  The let ters  denote  S(h)  and the  number s  
20iU(h)[ rounded off to the  nearest  integer. The vec tor  corresponding to the (078) reflexion, of sign g, is shown in 
var ious  positions. 
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where I(h) is the relative intensity of the 0kl reflexion, 
<I) is the average intensity of the reflexions having 
nearly the same sin 0 value, and f is the atomic scat- 
tering factor. 

2.2. Those terms for which I U(h)[ ~> 0.15 are selected 
and arranged in a square lattice (Fig. 1), in which 
the letters denote S(h), and the numbers indicate the 
relative magnitudes of ]U(h)l. For reasons which will 
emerge in § 3, it is desirable to preserve a distinction 
between the four groups of term signs characterized 
by: 

k even, 1 even; 
k odd, 1 even; 
k even, 1 odd; 
k odd, l odd. 

For convenience they will be referred to briefly as 
groups (e, e), (o, e), (e, o) and (o, o) respectively, and, 
to facilitate recognition, a different fount is used for 
the letters representing the signs of each group. The 
negative signs in Fig. 1 occur because in plane groups 
pgg and p4g. 

S(Okl) = s(ok~) = s(ok[) = 8(o~) 
and for (k +l) even 

S(Okl) = -S(Ofcl) = -s(ofd) = S(OZf) 
for (k+l) odd. 

I 
i (6) 

Similar relations hold for ping when k is even or odd. 
2.3. The products S(h')S(h+h')JU(h')U(h+h')l 

corresponding to a given term S(h)l U(h)l are quickly 
found in the following way. A sheet of perspex is 
placed over the lattice, the vector (h) is marked on it, 
as for (078) in Fig. 1, and the sheet is then 'ranged' 
over the lattice. Every position of the marked vector 
in which its ends simultaneously touch two occupied 
lattice points is found. Each pair of occupied lattice 
points connected thus by the vector (h) corresponds 
to a pair of values of (h') and (h+h') .  The products 
are used in two ways. (i) They are listed in separate 
tables for each term. Table 1 (column (1)) gives the 
list of products for the (025) term. These tables are 
used later (§ 4.1). (fi) They are entered in the sorting 
array, part of which is shown in Fig. 2 (a). An example 
of such an entry is given in § 2.4. I t  assists in the filling 
in and interpretation of the sorting array if the term 
signs are set out in the groups (e, e), (o, e), (e, o), (o, o) 
along the edges, as in Fig. 2(b). The squares contained 
within the large blocks of Fig. 2(b) will then contain 
terms of one group only, as shown in parentheses. 

2.4.* The product (4f)(8~), one of those correspond- 
ing to g (078) (Fig. 1), is considered as an example. 

* The italic, script  and  Greek characters  in the  t ex t  are 
equ iva len t  to the  corresponding characters  in Figs. 1-3 al- 
t hough  somewha t  different  in t y p e  face. 
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Table 1 
In  column (1) are l isted in order  of magn i tude  the  p roduc t s  

corresponding to the  (025) t e rm  of h y d r o x y d i h y d r o e r e m o -  
philone, the  t e rm sign of which is deno ted  b y  the  le t ter  
in Figs. 1 and 2; it is one correc ted  b y  the  i te ra t ive  process.  
Column (2) conta ins  the  signs of the  p roduc t s  de te rmined  
f rom the  t en ta t ive  list (§§ 3.2, 3.3). Columns (3)-(8) give the  
p roduc t  signs a t  each s tage of the  i terat ion.  A ques t ion  m a r k  
indicates  tha t  the  sign of one or bo th  member s  of the  p roduc t  
was uncer ta in  a t  t ha t  stage. A t  the foot  of each column is the  
sign deduced  for ~ f rom considerat ion of all the  p roduc t  signs 
listed in t ha t  co lumn;  this sign was used in the following cycle.  

(1) 
__: (2) (3) (4) (5) (6) (7) (8) 

4 2  ~rVf + - -  -~_ ? _ _ _ 

32  K g  . . . . . . .  

30 ~ . . . . . . .  

28 0 ~  + + + + + + + 
20 G m  + + ? + + + + 

20 /~¢ ? ? + ? ? _ _ 

18 2Vu -- --  _ ? _ _ _ 

18 ~ + + _ + _ _ _ 

18 2Vl - -  ? + ? + _ _ 

16 y ) J  + + ? + + + + 

16 .L f  . . . . . . .  

16 f l ~ -  + - -  + _ ? _ _ 

15 M t  + ? _ + + ? _ 

12 D1 - -  ? + ? _ _ _ 

12 K e  + + + + + + + 

12 K s  ? + - -  _ ? _ _ 

12 P v  ? ? + ? + + _ 

12 E m  - -  + + + + _ _ 

12 9 3 -  + . . . . . .  

9 H a  - -  - -  ? . . . .  

9 H n  - -  + - -  

9 71..U ? - -  + m 

The sign of the  (025) t e rm  in the  last  Four ier ,  a f te r  refine- 
m e r i t ,  w a s  - - .  

This is (i) entered__ in the table of products correspond- 
ing to g as 32f~, and (ii) entered as ~ in square (4f, 8c#) 
of the sorting array; this is one of two entries ringed 
in Fig. 2(a). The process of § 2.3 is repeated for all 
vectors (h) appearing in the lattice of Fig. 1. 

After the sorting array has been filled in, and before 
the coincidences are used (§ 3.1), it is most important 
to check as follows. All entries occur in threes, e.g. 
the sign relation 

~H$ ~ +1 
appears three times: 

(i) as ~ in (3H, 45), (fi) as H in (4~, 3a), 
(iii) as ~ in (3H, 3a).  

I t  is necessary to check that  for every sign relation 

34* 
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Fig. 2. (a) A por t ion of the  sorting array:  it is the  top lef thand pa r t  of (b). The t e rm sign symbols are set out  along the  
edges together  with 20 IU I rounded off to the nearest  integer. Of the  products  corresponding to g, (§ 2-4), which are ind- 
icated in Fig. 1, two are ringed here. They  are: 

(i) (4]). (8~), which is entered as y in square (4f, 8~), and 
(ii) (4v). (4J) ,  which is entered as g in square (4v, 4J ) .  

(b) A schematic  outline of the ma in  features of the  sort ing array. This lay-out  facilitates both  the  filing and checking of 
the entries. 

all three are present and correctly filed. This helps to 
eliminate errors and to ensure tha t  no coincidences 
are missed. 

3. The  recognition and correlation of coincidences 

3.1. The sorting array of products (Fig. 2(a)) is first 
searched for two or more entries occurring in the same 
square, i.e. for 'coincidences' between term signs. For  

example in square (4f, 4 J )  there are ~, d and u; 
hence it is inferred tha t  a and d are probably of the 
same sign, but  are probably of opposite sign to u. 
This combination of signs arises, of course, as a result 
of (6), and for pgg, pmg and p4g a maximum of four 
can occur in one square of the sorting array. 

Such inferences will fall natural ly into the four 
distinct groups (e, e), (o, e), (e, o) and (o, o) (see § 2.3 
and Fig. 2(b)). I t  is convenient to tabulate the in- 
ferences in small coincidence arrays, one for each group; 

two are shown in Fig. 3. For example, from square 
(3a, 3 ~ )  of Fig. 2(a), f ~ ~. The appropriate weight 
for 

a ~  ~ +1 is 3 × 3 × 8  = 7 2 ,  

and that  for 

a ~ f  "~ +1 is 3 × 3 × 4  = 36.  

The conjoint weight for the coincidence is 72 × 36 = 
2592; the corresponding entry in squares (4f, 8g) and 
(8g, 4f) of the (o, e) coincidence array (Fig. 3) is §, 
which should be interpreted as meaning tha t  f ~ 
from coincident relations of conjoint weight 8 × 4 × (9) 2 
= 2592. The second entry of § in these squares {4f, 8g) 
and (St, 4f) of the (o, e) coincidence array is due to 
the coincidence recorded in square (3u, 3 ~ )  of the 
sorting array (Fig. 2(a)). 

There is no restriction on the number of entries 
which can occur in any one square of the coincidence 
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Fig. 3. The coincidence arrays for groups (e, e) and (o, e). An entry of, for example, 9 in square (4f, 8g) indicates that f ~  
with conjoint weight_ of 4 × 8 × (9) 2. A triple coincidence such as e ~ f ~  t in (3a, 4J) (Fig. 2(a)) gives three distinct entries 
in the (o, e) array: 12 in (3e, 3t) and (3t, 3e); 12 in (3e, 4f) and (4f, 3e); ]2 in (4f, 3t) and (3t, 4f). The fourfold coincidence 
in (8g, 4~) gives six distinct entries. 

In these two arrays there were enough coincidences to permit all term signs to be tentatively determined, but this does 
n o t  always happen. The resultant conjoint weights in the (e, e) array form a completely consistent set, whereas there a r e  
a few minor inconsistencies which cannot be eliminated from the (o, e) array, and this is more ~sual. 

a r ray ,  but  sometimes,  e.g. in square  (4~ ,  4# )  of t h e  

(e, e) coincidence a r ray ,  they  do not  all agree. Hence, 
the resul tant  conjoint weight of the  coincidence is 

4 × 4 ×  {202-32 ' -242}  -- -19 ,200 ,  i.e. 9 ~ ~ with 
this resul tant  conjoint weight. (For a more exact  
discussion see the  Appendix.)  

3.2. The t e rm signs in group (e, e) are independent  
of the  origin chosen. Some m a y  be found absolutely 
from two types  of re lat ion:  

S(O,2k,2l )  ,~  S(Okl )S(Okl )  -- +1  (7a) 
and 

S(0,0,2I) ~ S(Okl)S(OkD = ( -1 )k+ t ,  (75) 

the entries for which appear  on the  diagonal of the  
sort ing a r r ay  (Fig. 2(a)). (Others such as 

S(0 ,2k ,21)S(Okl )  .~  S ( O k l ) ,  

which is a va r i an t  of (7a), give entries elsewhere in 
t h e  a r ray  but  t hey  are not  independent  and provide 
no new information.)  No coincidence entries can appear  
on the  diagonals of coincidence arrays ,  and so the  
diagonal  of the  (e, e) coincidence a r r a y  is a con- 
venient  place for enter ing indications of absolute sign 
given by either (7a) or (7b). There is none of the  la t te r  
in Fig. 3; the former are r inged to avoid confusing 
them with the coincidences. 

F rom these terms of known sign, the  process of 

al lott ing ten ta t ive  signs to the  terms in the (e, e) 
coincidence a r r ay  is s tar ted.  Thus, in square (8~f, 8~)  
on the  diagonal of this a r ray  there are three indica- 
tions t ha t  ~ is positive and a + sign is therefore entered 
a t  the  foot of column (8~). F rom the top row, square 
( 3 X ,  8~) ,  it appears  t ha t  X probably  has the same 
sign as ~ .  A +s ign  is therefore inserted a t  the  foot 
of column (3wiz) also. Again, in square (3~ ' ,  3 ~ )  
there is an indication t ha t  ~iP is positive; this is 
recorded by  a +s ign  a t  the foot of column ( 3 ~ ) .  
F rom the row 3~tf it appears  t h a t  v z has the same 
sign as ~<f, and t h a t  J is of opposite sign to ~f .  
I f  this process is continued throughout  the  coincidence 
ar ray ,  it will be found tha t  ten ta t ive  signs m a y  be 
allotted to all the  terms in the (e, e) group*. All the  
entries in a column are t aken  into account in fixing 
the  sign, which is finally placed a t  the bo t tom of t h a t  
column. (I t  m a y  be necessary to go through the a r r ay  
more t h a n  once, and to adjust  the signs a t  the foot 
of the table  until  the closest possible approach to a 
self-consistent set of signs is reached.) 

3.3. In  the  plane group pgg there are four possible 
centrosymmetr ic  origins. I f  two te rm signs be chosen 
arbitrari ly,  one from each of two of the  remaining 

* Woolfson (1954) has described a different procedure for 
getting absolute signs for terms in this group, but, as it t o o  
is based o n  t h e  available triple sign products, it yields no 
i n d e p e n d e n t  i n f o r m a t i o n .  
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three groups (e, o), (o, e) and (o, o), the origin is 
thereby selected. The coincidence arrays for the three 
groups are examined in order to select the terms which 
are to be given arbi t rary  signs; two terms, which 
enter into a large number  of coincidences, should be 
chosen so tha t  as m a n y  as possible of the term signs 
in their  respective groups m a y  be deduced tenta t ively  
from the coincidence arrays. Thus the solution of the 
(o, e) coincidence array (Fig. 3) starts from g, which is 
arbi t rar i ly  taken as positive. The procedure for allot- 
t ing tenta t ive  signs to the rest of the (o, e) terms is 
the same as tha t  for the (e, e) ar ray (§ 3.2), except 
tha t  there is only one sign (g = +)  from which to 
start.  One of the remaining two groups, say (e, o), 
m a y  be treated similarly, leaving the last group (o, o) 
in which no term signs are known at this stage. If the 
lower l imit  of I gl has been sui tably  chosen (see § 7), 
tenta t ive  signs can be allotted to almost all the terms 
in the three groups (e, e), (e, o) and (o, e). There is 
no need to do any th ing  about the (o, o) group of terms 
at this  point;  the iter~tive process of § 4.1 will yield 
signs for the terms in this group. 

4. T h e  i t e r a t i ve  p r o c e s s  

A tenta t ive  set of signs is now available for a sub- 
s tant ia l  proportion of the terms in the lattice, and 
this set forms the basis for the i terat ive procedure. 

4-1. At tent ion is now directed to the lists of products, 
S(h ' )S (h+h ' ) JU(h ' )U(h+h ' ) I ,  referred to in § 2.3(i). 
Table 1 gives the list for the (025) term, sign $, of 
hydroxydihydroeremophilone.  Column (2), which con- 
tains the signs of the products, is filled in wherever 
possible by  using the tenta t ive  set of signs (§ 3.2 and 
§ 3.3). The entries in this column are then used in 
conjunction with the weights in column (1) to deduce 
the probable sign ~ of this term (cf. equation (5)). 
The sign so found is entreed at the foot of column (2). 
All the terms are treated in this way in turn;  those 
to which signs have already been tenta t ive ly  allotted 

are reassessed. As a result, a new, and usually longer, 
list of term signs is available with which the whole 
process is repeated. The results of each subsequent  
stage are shown in columns (3), (4), (5) . . . .  and at the 
foot of each column is shown the revised assessment 
of the term sign to which the products correspond. 
The i terat ive process is continued unti l  a m i n i m u m  
number  of term signs remains doubtful ;  some five or 
six cycles will usually suffice. The sign f inal ly allotted 
to each term is tha t  at the foot of the last column of 
the table which relates to tha t  term. 

I t  should be pointed out tha t  there are var iants  
which m a y  speed up the procedure and which m a y  
improve the rate of convergence, but  the one described 
has been chosen for convenience of presentation. 

4.2. I t  is necessary to make a check on the con- 
clusions so far reached. If a different pair of a rb i t ra ry  
terms (§ 3.3) is taken, the whole sequence can be 
repeated, and if the same, or an equivalent,  set of 
signs is converged upon, it is reasonable to suppose 
that  no false deductions have been made. Whether  
the set obtained is the correct one or not can be 
determined only by the subsequent  in terpreta t ion and 
ref inement  of the electron-density map  so obtained. 

5. T h e  e x t e n s i o n  of the  m e t h o d  to t e r m s  
of s m a l l e r  I UI 

The signs of some terms of smaller  [U[ may  be ob- 
tained by using, on the original lattice, the vector 
appropriate to each such small  term. A large number  
of products must  be taken into account before these 
term signs can be assessed with any  confidence; even 
so, they  will be less reliable than  the signs of the terms 
of the original lattice (Fig. 1). 

6. A p p l i c a t i o n s  of the  m e t h o d  

6.1. Harmine,  ClaH12N20, orthorhombic,  space group 
P21212t, 

1 , 1 ib 

0 

Fig. 4. An electron-density map of the (001) projection of harmine based on 41 terms with signs found as described in 
§ 6.1. The skeleton indicates ~he interpretation in terms of the known chemistry. 
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a = 1 9 . 3 ~ ,  b - - 9 . 8 ~ _ ,  c - - 5 . 8 ~ .  

Of the 183 independent observed F(hkO)'s, 41 had 
UI >_ 0.15, the largest being 0.38; consequently there 

was no possibility of a solution by inequalities. The 
method was applied and gave 120 distinct triple sign 
relations and 54 coincidences. The whole set of 41 
signs was obtained. An electron-density map, prepared 
from these 41 terms (Fig. 4), was interpreted in terms 
of the known chemistry of the molecule. Subsequent 
refinement has given Fig. 5, and has shown that  27 of 

~ ~ " ~  

~_ 0 1 2 ~ ~ ~  

Fig. 5. The most recent electron-density map of the (001) 
projection of harmine. (R ~- 0.22 taken over all observed 
reflexions.) 

the 41 terms were correct; many of the remaining 14 
were high-order terms with relatively low values of IF[, 
so tha t  their influence on the main features of the map 
of Fig. 4 is slight. A further 31 terms were investigated 
with ]UI < 0-15. Of these, 9 could not be allotted a 
sign, and, of the remaining 22 signs, 16 were subse- 
quently found to be correct. 

6.2. Hydroxydihydroeremophilone, Cl~H24Oe, or- 
thorhombic, space group P212121, a = 7.5 A, b - -  
10.0 /~, c = 19.7 _~. 

Of the 148 observed F(0k/)'s, 55 had I U] >-0.15, 
the largest again being 0.38 (only 7 exceeded 0.3) so 
inequalities were, therefore, unusable. The method 
was applied and gave 230 distinct triple sign relations 
leading to 105 distinct coincidences. Consideration of 
the coincidences made it possible to give signs ten- 
tatively to 36 out of the 38 terms in the (e, e), (o, e) 
and (e, o) groups; after six cycles of the iterative 
process a set of 54 signs (including the two arbitrarily 
fixed signs) was obtained. The method was extended 
to a further 38 terms for which 0.1 < I U] < 0.15, and 
it was possible to give signs to 24 of them. Two elec- 
tron-density maps were calculated, one containing the 
original 54 terms and the other all the 78 terms, and 
both were interpreted in the same way (see Figs. 2(a) 
and 2(b), Grant, 1957). Subsequent refinement has 
shown that  51 of the original set and 22 of the second 
set had correct signs. 
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The method was also applied to the (010) projection 
of the same crystal. Of the 90 independent observed 
F(hO1)'s only 28 had [ U ] _  0.15. The method when 
applied gave only 42 sign relations. Signs were found 
for all 28 terms, but  the electron-density map so 
obtained (Fig. 2(c), Grant, 1957) could not be inter- 
preted and the projection was eventually solved in 
another way. Subsequent refinement has shown that  
9 of the 28 terms had incorrect signs; the correct set 
is another self-consistent solution of the products 
used. 

7. D i s c u s s i o n  

The solution under favourable conditions of two crystal 
structures of moderate size (17 atoms per molecule) 
by the method described would appear to have ex- 
tended the range of Sayre's or Cochran's methods 
beyond the 10-11 light atoms considered by Cochran 
to be the useful limit. Admittedly, in the case of 
hydroxydihydroeremophilone, the projection solved 
contained much overlap and the effective number of 
scattering points was less than the 17 atoms. In 
harmine, however, there is no overlap in the projection 
solved. I t  is emphasized tha t  in both the zones suc- 
cessfully studied no previous knowledge of the signs 
of any terms was available or was required: the solu- 
tions were obtained ab initio. 

The set of uni tary structure factors for harmine was 
sent to Dr W. Cochran, who kindly tried the digital- 
computer method on the data. The machine (EDSAC) 
could not accept all the data we used, so 24 terms of 
largest ]U[ (2 of which were given arbi trary signs) 
were selected and 36 sign relations between these were 
considered. The relations were arranged in order of 
decreasing probability, and the machine was asked to 
give the sets of signs for which no more than 3 of the 
first 22 relations, and not more than 6 out of the total 
of 36, would be incorrect. 158 such sets of signs were 
produced by the machine. One of them, tha t  with the 
maximum value of Z (see § 1), agreed with that  ob- 
tained by Howells, but is now known to have 5 in- 
correct signs. There were also 5 other sets, each with 
5 incorrect signs, and a further 4 sets, each with 4 
incorrect signs (all with smaller Z), but none with less 
than 4 incorrect signs. There was, however, no simple 
way of selecting which of the 158 sets was closest to 
the correct one. 

The present method has the following points in its 
favour: 

(a) The principle of coincidences has proved useful 
in getting a start  on a problem. The number of coin- 
cidences increases rapidly as the cut-off limit of the 
I Ul's is lowered, and their conjoint probabilities can 
be remarkably large (see Appendix). 

(b) The iterative process compels the solution to 
conform to the very large number of sign relations; 
this number increases roughly as the square of the 
number of terms used. 

(c) This wealth of sign relations and coincidences 



and 

where 

and 

causes the problem to be much more elaborately over- 
determined than has been possible in other methods, 
and this is believed to be the principal reason for 
reaching single solutions in two of the applications 
recorded here. I t  appears from experience gained from 
harmine, hydroxydihydroeremophilone and other 
problems that, for success, the ratio of the number of 
sign relations to terms should be at least 2 or 3 to 1, 
and the lower limit of [U] should be taken accordingly. 
Admittedly there is a rapid increase in the volume 
of work as the number of terms increases, but it leads 
usually to greater certainty in the sign discrimination 
and also often improves the rate of convergence of the 
iterative process. A problem such as the main projec- 
tion of hydroxydihydroeremophilone can, after a little 
practice, be carried through all the stages from § 2.2 
onward in three or four days. 

I t  is possible that  the machine results for harmine 
may have been vitiated by random and systematic 
errors in the [U['s, which are usually more serious for 
the high-order terms. The top 24 chosen for EDSAC 
might well have been different had accurate values of 
[U[ been known, and it is not known if they would 
have shortened the list of possible solutions or given 
one nearer the truth. But it would appear that  the 
manual method copes more successfully with such 
errors because it uses a larger amount of information. 

A practical problem remains in the interpretation 
of the electron-density maps, which are inevitably 
rather 'garbled' versions, and, as in most structure 
determinations, this may well be the least easy step 
in the entire procedure. Intermolecular overlap, which 
complicates the interpretation rather more than intra- 
molecular overlap, may indeed make recognition im- 
possible. 

The method may fail in a particular problem for a 
variety of reasons, but, until it has been used more 
extensively, there will not be sufficient evidence to 
formulate the conditions under which one might 
expect an application of the method to be successful. 

I t  should be emphasized that  any  centrosymmetric 
plane group will yield (i) absolute signs for terms in 
group (e, e) (see § 3.2) and (ii) coincidence arrays. I t  
will, however, be impossible to get any negative signs 
or negative coincidences except in plane groups 
pgg, pmg and p4g. In the absence of negative coin- 
cidences, the inevitable solution would be the im- 
probable and unacceptable result that  all terms have 
the same sign. 

A P P E N D I X  

Consider the two coincident triple sign relations: 

S(A)S(B) ~ S(C1), 
S(A)S(B) ~ S(C2), 

for which the probabilities (3) are respectively 

o~ = ½[l+tanh 01] 

fl = ½[l+tanh 08], 

01 = I N U ( A ) U ( B ) U ( C 1 ) I  

O, = I N U ( A ) U ( B ) U ( C 2 ) I ,  

where N is the number of atoms in the unit cell. The 
probability that  S(C1) ~ S(C 2) is 

p(=) = ~/~÷(1--~)(1--~) = 1 - ~ - ~ + 2 a f l ,  
= ½[l+tanh 01.tanh 0~], (8) 

i.e. ½_<p(=)_< 1. 
For example, from square (8g, 4~)  in Fig. 2(a), 
b ~ h .  

For 

b ~ g ~ ,  0 z = 5 0 × 3 × 8 × 4 / ( 2 0 )  a---0.6, a = 0 . 7 7 ,  

and for 

1 

pl(=) 

h ~ g ~ ,  0 ~ = 5 0 × 4 × 8 × 4 / ( 2 0 )  a =0"8, fl =0"88 ,  

assuming an effective value for N of 50 atoms. 
The probability that  b and h have the same sign is, 

therefore, 
p(=)  =0 -70 .  

Similarly, from square (8g, 3~P), we have a "~ - u ,  
with p(4=) = 0.59. 

If there are two coincidences between the same pair 
of terms (as, for example, in square (3~, 4~)  in 
Fig. 3) and the probabilities of the signs agreeing in 
each case are Pz(=) and P2(=) respectively, then the 
resultant probability of the signs agreeing for the 
double coincidence is P(=) ,  where 

0"9 

Pl(=)P~(=) (9) 
P (=) = Pl (=)P, (=) + Pl (+)P~ (+) ' 
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0 
o #2(=) 1 

• :Fig. 6. A graphical representation of (9), giving the resultant 
conjoint probability, P(=), of a duplicated coincidence, 
the individual probabilities for each coincidence being 
Pl ( ---- ) a n d  P2 ( = ). 
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which is greater than Pl (=)  if P l ( = ) > - P ~ ( = ) - >  ~*, 
and is illustrated graphically in Fig. 6. 

More generally, for n coincidences the resultant 
probability of the positive sign is deducible from the 
equation 

P(=) - h 
P( ~:) - i - l  \P -~) ) i  " 

P ( = )  is very conveniently evaluated stepwise by 
repeated use of Fig. 6. 

As an example, consider the coincidences in square 
(4~, 4#)  of the (e, e) array (Fig. 3 and § 3.1). Two 
different levels of probability for each coincidence will 
be considered, corresponding to 16 and 10 atoms per 
molecule--to allow for the overlapping in projection: 

16 a toms  10 a toms  
p l ( = )  0.66 0-57 
P2(=  ) 0.20 0.34 
P3(----) 0-29 0.40 

From Fig. 6, 

P(=)  0.17 0.32 
P(~=) 0-83 0.68 

whence, if Z~j  and all its contributing terms are not 
large, the approximation of § 3.1 is obtained, apart  
from some constant factors. 

The solution of the four coincidence arrays could 
easily be mechanized, but so far nothing sufficiently 
difficult to warrant this has arisen. I t  would involve 
the maximization of 

I ' =  , ~ . ~  S(CI)S(C2)W(C 1, C2), (12) 
C1 C2 

where W(C1, C2) is the resultant conjoint weight 
(including sign) for the coincidence between S(Ca) 
and S(C2). 

Note added in proof, 19 May 1957.--No reference has 
been made here to the paper recently published by 
Woolfson (1957), as the authors were unaware of its 
existence until it appeared in print after this paper 
went to press. 

We wish to record our appreciation of the coopera- 
tion and helpful criticisms of Dr W. Cochran. 

Even at the lower level these are useful. 
Had all three been of the same sign, as often hap- 

pens, the resultant probabilities for P(4=) would have 
been 0.95 and 0.75 respectively. 

The most appropriate quant i ty  to use for W(C 1, C2), 
the resultant conjoint weight, when maximizing (12) 
below, is obviously ( 2 P ( = ) - l ) ,  but an exact evalua- 
tion of this is rather tedious and often unnecessary, 
for the form mentioned in § 3.1 is a reasonable ap- 
proximation for all but the larger coincidences. Thus 
if tanh ~1 is substituted for (tanh 01 tanh 02) in equa- 
tion (8), where 01 and 02 have the values given above, 
and if similar quantities are defined for each of the 
coincidences between these two terms, it is easy to 
show that  

W = t a n h  ~j , (11) 
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